Practice - Proof by Contraposition
Enroll to start learning
You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.
Practice Questions
Test your understanding with targeted questions
What is proof by contraposition?
💡 Hint: Think about the relationship between P and Q.
If P → Q is true, what can we say about ¬P?
💡 Hint: Focus on the logic of implications.
4 more questions available
Interactive Quizzes
Quick quizzes to reinforce your learning
What does proof by contraposition allow us to do?
💡 Hint: Focus on the structure of the implication.
True or False: Vacuous proofs are always useful.
💡 Hint: Consider when a premise may easily be false.
Get performance evaluation
Challenge Problems
Push your limits with advanced challenges
Prove by contradiction that √3 is irrational.
💡 Hint: Think about the implications of squaring both sides.
Demonstrate using vacuous proof that 'If n > 5, then n^2 > 25' holds true when n = 3.
💡 Hint: Evaluate the initial premise.
Get performance evaluation
Reference links
Supplementary resources to enhance your learning experience.