Practice Addition and Multiplication of Polynomials Over Fields - 20.2 | 20. Polynomials Over Fields and Properties | Discrete Mathematics - Vol 3
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Addition and Multiplication of Polynomials Over Fields

20.2 - Addition and Multiplication of Polynomials Over Fields

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions

Question 1 Easy

Define irreducible polynomial in simple terms.

💡 Hint: Think about what would happen if we could break it down.

Question 2 Easy

In GF(5), what would be the result of adding (3x + 4) and (2x + 2)?

💡 Hint: Be careful with adding coefficients!

4 more questions available

Interactive Quizzes

Quick quizzes to reinforce your learning

Question 1

What is the result of adding 2x^2 + 2 and x^2 + 1 in GF(3)?

1
2x^2 + 2
0

💡 Hint: Remember to add coefficients considering modulo.

Question 2

True or False: The product of any two non-zero elements in a field cannot be zero.

True
False

💡 Hint: Recall the definition of field behavior.

1 more question available

Challenge Problems

Push your limits with advanced challenges

Challenge 1 Hard

If f(x) = x^4 + 1 and g(x) = x^2 + 2, determine their GCD over GF(5).

💡 Hint: Start by dividing the higher degree polynomial.

Challenge 2 Hard

Prove that (x - 3) is a factor of f(x) = x^3 - 9 in GF(10).

💡 Hint: Check for roots directly in the polynomial.

Get performance evaluation

Reference links

Supplementary resources to enhance your learning experience.