Practice Power Of A Quotient Law (3.5) - Laws of Exponents - IB 10 Mathematics – Group 5, Algebra
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Power of a Quotient Law

Practice - Power of a Quotient Law

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions

Question 1 Easy

Simplify \( \frac{7^3}{7^1} \)

💡 Hint: Remember to subtract the exponents.

Question 2 Easy

What is \( \frac{5^4}{5^2} \)?

💡 Hint: Use the quotient law.

4 more questions available

Interactive Quizzes

Quick quizzes to reinforce your learning

Question 1

What does the Power of a Quotient Law state?

We add the exponents
We multiply the exponents
We subtract the exponents

💡 Hint: Think about what happens when you divide.

Question 2

True or False: \( \frac{5^3}{5^1} = 5^{3+1} \).

True
False

💡 Hint: Remember the phrase 'Top minus Bottom'.

Get performance evaluation

Challenge Problems

Push your limits with advanced challenges

Challenge 1 Hard

If \( \frac{m^9}{m^3 n^2} \) is given, simplify the expression fully.

💡 Hint: Break down each base individually.

Challenge 2 Hard

Simplify and express with positive exponents: \( \frac{4^{-2}}{4^{-5}} \).

💡 Hint: Pay attention to how you handle negative exponents!

Get performance evaluation

Reference links

Supplementary resources to enhance your learning experience.