Practice Combined Electric And Magnetic Fields: Velocity Selector (D3.3) - Theme D: Fields
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Combined Electric and Magnetic Fields: Velocity Selector

Practice - Combined Electric and Magnetic Fields: Velocity Selector

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions

Question 1 Easy

What is the formula for velocity in a velocity selector?

💡 Hint: Recall the balance of forces on the charged particle.

Question 2 Easy

Name a device that uses velocity selectors.

💡 Hint: Think of devices that analyze charged particles.

4 more questions available

Interactive Quizzes

Quick quizzes to reinforce your learning

Question 1

What does a velocity selector do?

A device that accelerates particles
A device that sorts particles by speed
A device that analyzes mass
A device that only operates at high speeds

💡 Hint: Think about its role in analyzing particles.

Question 2

True or False: In a velocity selector, particles that move at speeds other than E/B are not deflected.

True
False

💡 Hint: Recall how forces act on the particles.

Get performance evaluation

Challenge Problems

Push your limits with advanced challenges

Challenge 1 Hard

A beam of electrons is injected into a velocity selector where the electric field is set at 300 N/C, and the magnetic field is 0.05 T. Calculate the speed of electrons that pass through undeflected.

💡 Hint: Substitute the known values into the velocity formula.

Challenge 2 Hard

In a mass spectrometer, ions with a charge of +1.6 × 10⁻¹⁹ C move through a velocity selector where E=600 N/C and B=0.04 T. After passing through, they enter a magnetic field. Calculate the radius of the circular path they will take if they are moving at the speed calculated previously.

💡 Hint: Use the previously calculated velocity of the particle to find its radius.

Get performance evaluation

Reference links

Supplementary resources to enhance your learning experience.