Practice Moment Generating Functions (MGFs) - 11.3 | 11. Moments and Moment Generating Functions | Mathematics - iii (Differential Calculus) - Vol 3
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Moment Generating Functions (MGFs)

11.3 - Moment Generating Functions (MGFs)

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions

Question 1 Easy

What is the definition of a Moment Generating Function?

💡 Hint: Think about the expected value.

Question 2 Easy

List the property that allows obtaining the r-th moment from an MGF.

💡 Hint: Consider how derivatives work.

4 more questions available

Interactive Quizzes

Quick quizzes to reinforce your learning

Question 1

What is the calculation for the first moment using an MGF?

M_X(0)
M'_X(0)
E[X^2]

💡 Hint: Consider what derivation reveals about the function.

Question 2

True or False: MGFs can be used for dependent random variables.

True
False

💡 Hint: Reflect on how independence affects calculations.

Get performance evaluation

Challenge Problems

Push your limits with advanced challenges

Challenge 1 Hard

If X ~ N(0,1) has an MGF given by M_X(t) = exp(t^2/2), derive E[X^2] and variance.

💡 Hint: Differentiate the MGF to find moments.

Challenge 2 Hard

Consider a random variable with probabilities P(X=1)=1/3, P(X=2)=2/3. Find the MGF, first moment, and variance.

💡 Hint: Make sure to differentiate and evaluate properly.

Get performance evaluation

Reference links

Supplementary resources to enhance your learning experience.