Practice Summary - 12.7 | 12. Inverse Laplace Transform | Mathematics - iii (Differential Calculus) - Vol 1
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Summary

12.7 - Summary

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions

Question 1 Easy

Find the inverse Laplace transform of F(s) = 1/s.

💡 Hint: Recall basic pairs of transforms.

Question 2 Easy

What is L^{-1}{1/s^2}?

💡 Hint: This is one of the standard inverses.

4 more questions available

Interactive Quizzes

Quick quizzes to reinforce your learning

Question 1

What is the primary purpose of the Inverse Laplace Transform?

To convert time-domain functions to frequency domain.
To convert frequency domain functions back to time domain.
To solve algebraic equations.

💡 Hint: Think about the purpose of Laplace transforms and their inverses.

Question 2

True or False: The Partial Fraction Method can be used for any Laplace transform.

True
False

💡 Hint: Recall the conditions required for using this technique.

Get performance evaluation

Challenge Problems

Push your limits with advanced challenges

Challenge 1 Hard

Derive the inverse Laplace transform using the complex inversion formula for F(s) = (1/(s^2 + 4)). State your final result in terms of a function.

💡 Hint: Consider how to evaluate the contour integral.

Challenge 2 Hard

Using the Convolution Theorem, find L^{-1}{(s+3)/(s^2 + 3s + 2)}. Show results in a detailed step.

💡 Hint: Starting with partial fractions is the key step.

Get performance evaluation

Reference links

Supplementary resources to enhance your learning experience.