Practice Introduction - 5.1.1 | 5. Solution of Algebraic and Transcendental Equations | Mathematics - iii (Differential Calculus) - Vol 4
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Introduction

5.1.1 - Introduction

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions

Question 1 Easy

What are algebraic equations? Provide an example.

💡 Hint: Remember the operations involved: addition, subtraction, multiplication, etc.

Question 2 Easy

What is an example of a transcendental equation?

💡 Hint: Think about functions that are not polynomials.

4 more questions available

Interactive Quizzes

Quick quizzes to reinforce your learning

Question 1

What type of equations often require numerical methods for solutions?

Algebraic Equations
Linear Equations
Transcendental Equations

💡 Hint: Consider the nature of transcendental functions.

Question 2

True or False: The Bisection Method requires the derivative of the function.

True
False

💡 Hint: Recall the conditions for the Bisection Method.

Get performance evaluation

Challenge Problems

Push your limits with advanced challenges

Challenge 1 Hard

Given the equation 𝑥² - 5 = 0, apply the Bisection Method to find a root with an interval of [2, 3] and a tolerance of 0.01. Demonstrate your calculations.

💡 Hint: Start calculating f(2) and f(3) and check the value of the function.

Challenge 2 Hard

For the equation 𝑒ˣ = 3𝑥, apply the Newton-Raphson method starting with an initial guess of 1. Find the root up to three decimal places.

💡 Hint: Make sure to differentiate the function to get your f'(x).

Get performance evaluation

Reference links

Supplementary resources to enhance your learning experience.