Practice Prerequisite Condition (Proper Rational Function) - 5.2.1.2 | Module 5: Laplace Transform Analysis of Continuous-Time Systems | Signals and Systems
K12 Students

Academics

AI-Powered learning for Grades 8–12, aligned with major Indian and international curricula.

Academics
Professionals

Professional Courses

Industry-relevant training in Business, Technology, and Design to help professionals and graduates upskill for real-world careers.

Professional Courses
Games

Interactive Games

Fun, engaging games to boost memory, math fluency, typing speed, and English skillsβ€”perfect for learners of all ages.

games

5.2.1.2 - Prerequisite Condition (Proper Rational Function)

Learning

Practice Questions

Test your understanding with targeted questions related to the topic.

Question 1

Easy

Define a proper rational function.

πŸ’‘ Hint: Think about the degrees of polynomials.

Question 2

Easy

What must be done if a rational function is improper?

πŸ’‘ Hint: Recall the steps of numerical long division.

Practice 4 more questions and get performance evaluation

Interactive Quizzes

Engage in quick quizzes to reinforce what you've learned and check your comprehension.

Question 1

What defines a proper rational function?

  • Numerator < Denominator
  • Numerator > Denominator
  • Numerator = Denominator

πŸ’‘ Hint: Focus on powers of the variables.

Question 2

If you have an improper rational function, what is the next step?

  • Yes
  • No

πŸ’‘ Hint: Consider what is necessary for simplification.

Solve and get performance evaluation

Challenge Problems

Push your limits with challenges.

Question 1

Demonstrate the process of polynomial long division for N(s) = s^4 + 2s^3 + s and D(s) = s^2 + 1.

πŸ’‘ Hint: Align terms of similar degrees.

Question 2

Evaluate the time-domain effects of the polynomial part obtained from an improper rational function given N(s) = s^3 + 3s and D(s) = s^2 + 1.

πŸ’‘ Hint: Identify how the polynomial translates into time-domain behavior.

Challenge and get performance evaluation