Practice Systematic Approach to Solving N Queens - 32.1.4 | 32. Backtracking, N queens - Part A | Data Structures and Algorithms in Python
K12 Students

Academics

AI-Powered learning for Grades 8–12, aligned with major Indian and international curricula.

Academics
Professionals

Professional Courses

Industry-relevant training in Business, Technology, and Design to help professionals and graduates upskill for real-world careers.

Professional Courses
Games

Interactive Games

Fun, engaging games to boost memory, math fluency, typing speed, and English skillsβ€”perfect for learners of all ages.

games

Practice Questions

Test your understanding with targeted questions related to the topic.

Question 1

Easy

Explain backtracking in your own words.

πŸ’‘ Hint: Think about Sudoku or maze-solving.

Question 2

Easy

What does N represent in the N Queens problem?

πŸ’‘ Hint: Relate it to the board size.

Practice 4 more questions and get performance evaluation

Interactive Quizzes

Engage in quick quizzes to reinforce what you've learned and check your comprehension.

Question 1

What is the main goal of the N Queens problem?

  • To place queens that threaten each other
  • To count the total number of queens
  • To place N queens without threatening each other
  • To create a chess game

πŸ’‘ Hint: Consider the rules of the chess piece.

Question 2

True or False: Backtracking is only useful when there are limited possible moves available.

  • True
  • False

πŸ’‘ Hint: Think about how backtracking explores multiple paths.

Solve 2 more questions and get performance evaluation

Challenge Problems

Push your limits with challenges.

Question 1

Design a backtracking algorithm in Python for N = 8. Discuss the performance implications.

πŸ’‘ Hint: Factor in time complexity, potentially O(N!).

Question 2

How would your algorithm accommodate variable sizes of the board (N changing)? Discuss adaptations.

πŸ’‘ Hint: Think about dynamic data structures.

Challenge and get performance evaluation