Second Law (law Of Acceleration) - 3. Laws of Motion - ICSE 9 Physics
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Second Law (Law of Acceleration)

Second Law (Law of Acceleration)

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Practice

Interactive Audio Lesson

Listen to a student-teacher conversation explaining the topic in a relatable way.

Understanding Force and Acceleration

🔒 Unlock Audio Lesson

Sign up and enroll to listen to this audio lesson

0:00
--:--
Teacher
Teacher Instructor

Welcome, class! Today we're diving into Newton's Second Law of Motion, which connects force and acceleration. Remember, the formula is F = ma. Can anyone tell me what that means?

Student 1
Student 1

It means force equals mass times acceleration!

Teacher
Teacher Instructor

Exactly! So, if you increase the mass of an object, what do you think happens to the acceleration if the same force is applied?

Student 2
Student 2

The acceleration would decrease, right?

Teacher
Teacher Instructor

Correct! That's because acceleration is inversely proportional to mass. Let's remember this with the mnemonic 'Famous Math Artists' to recall F = ma. 'F' for force, 'm' for mass, and 'a' for acceleration. Everyone got that?

Momentum and Its Relation to Force

🔒 Unlock Audio Lesson

Sign up and enroll to listen to this audio lesson

0:00
--:--
Teacher
Teacher Instructor

Now, what about momentum? Can anyone tell me how it's defined?

Student 3
Student 3

Momentum is mass times velocity (p = mv)!

Teacher
Teacher Instructor

Exactly! And what happens to momentum if a force is applied over time?

Student 2
Student 2

The momentum changes, right? That's how impulse relates to momentum.

Teacher
Teacher Instructor

Spot on! We can express impulse as the change in momentum. Remember, impulse equals force times time. Let's use the term 'Lose Time' to remind it: L for force, T for time. Great job!

Applications of the Second Law

🔒 Unlock Audio Lesson

Sign up and enroll to listen to this audio lesson

0:00
--:--
Teacher
Teacher Instructor

Lastly, let's discuss applications of the Second Law. Can anyone give an example from daily life?

Student 4
Student 4

When you push a shopping cart, if you push harder, it goes faster!

Teacher
Teacher Instructor

Exactly! The harder you push (more force), the greater the acceleration. Anyone else?

Student 1
Student 1

Like when a heavier truck takes longer to speed up than a small car!

Teacher
Teacher Instructor

Great example! This illustrates the impact of mass on acceleration. Let's summarize: F = ma connects forces, mass, and acceleration in our everyday life!

Introduction & Overview

Read summaries of the section's main ideas at different levels of detail.

Quick Overview

The Second Law of Motion states that the acceleration of an object is directly proportional to the force applied and inversely proportional to its mass.

Standard

Newton's Second Law (Law of Acceleration) defines the relationship between force, mass, and acceleration, encapsulated in the formula F=ma. This law explains how the rate of change of momentum of a body is determined by external forces acting on it.

Detailed

Second Law (Law of Acceleration)

Newton's Second Law of Motion, also known as the Law of Acceleration, introduces a fundamental relationship between force, mass, and acceleration. According to this law, the acceleration of an object is directly proportional to the net force acting on it and inversely proportional to its mass. The law is mathematically represented by the equation:

F = ma
Where:
- F is the net force applied to the object (measured in newtons, N)
- m is the mass of the object (measured in kilograms, kg)
- a is the acceleration produced (measured in m/s²)

The law also expands to discuss momentum, given by the formula p = mv, which leads to the understanding that F = dp/dt (the rate of change of momentum). This situation highlights that the greater the mass of an object, the more force is required to achieve its acceleration. Hence, the Second Law forms a cornerstone for analyzing motion and understanding how various forces impact bodies in motion.

Youtube Videos

What is Newton's 2nd Law Of Motion? | F = MA | Newton's Laws of Motion | Physics Laws | Dr. Binocs
What is Newton's 2nd Law Of Motion? | F = MA | Newton's Laws of Motion | Physics Laws | Dr. Binocs
Force and Laws of Motion Complete Chapter🔥| CLASS 9th Science| NCERT covered | Prashant Kirad
Force and Laws of Motion Complete Chapter🔥| CLASS 9th Science| NCERT covered | Prashant Kirad
Laws of Motion ICSE Class 9 | Physics Chapter 3 Class 9 ICSE | @sirtarunrupani
Laws of Motion ICSE Class 9 | Physics Chapter 3 Class 9 ICSE | @sirtarunrupani
Newton's Second Law of Motion | Physics | Infinity Learn NEET
Newton's Second Law of Motion | Physics | Infinity Learn NEET
Momentum and 2nd Law of Motion One Shot | Force and Laws of Motion | NCERT Class 9 Physics Ch-9
Momentum and 2nd Law of Motion One Shot | Force and Laws of Motion | NCERT Class 9 Physics Ch-9
न्यूटन के तीन नियम आसानी से समझे - Newton's laws of motion - Understand in 3 minutes
न्यूटन के तीन नियम आसानी से समझे - Newton's laws of motion - Understand in 3 minutes
Force And Laws of Motion | Lecture 1 | Chapter 8 |  Class 9 Science | CBSE | Free Education
Force And Laws of Motion | Lecture 1 | Chapter 8 | Class 9 Science | CBSE | Free Education
Newton's First Law of Motion | Forces and Motion | Physics | Infinity Learn
Newton's First Law of Motion | Forces and Motion | Physics | Infinity Learn
Motion Complete Chapter🔥| CLASS 9th Science| NCERT covered | Prashant Kirad
Motion Complete Chapter🔥| CLASS 9th Science| NCERT covered | Prashant Kirad
What Is Newton's First Law Of Motion? The Dr.Binocs Show|Best Learning Videos For Kids|Peekaboo Kidz
What Is Newton's First Law Of Motion? The Dr.Binocs Show|Best Learning Videos For Kids|Peekaboo Kidz

Audio Book

Dive deep into the subject with an immersive audiobook experience.

Statement of the Law

Chapter 1 of 3

🔒 Unlock Audio Chapter

Sign up and enroll to access the full audio experience

0:00
--:--

Chapter Content

Statement: The rate of change of momentum of a body is directly proportional to the applied force and takes place in the direction of the force.

Detailed Explanation

The second law states that when a force is applied to an object, it causes the object's momentum to change. Momentum is the product of an object’s mass and its velocity. The greater the force applied, the greater the change in momentum will be. The direction of this change is the same as the direction of the applied force.

Examples & Analogies

Imagine pushing a shopping cart at the grocery store. If you push harder (greater force), the cart speeds up more quickly (greater change in momentum) and moves in the direction that you are pushing.

Mathematical Representation

Chapter 2 of 3

🔒 Unlock Audio Chapter

Sign up and enroll to access the full audio experience

0:00
--:--

Chapter Content

F = ma
Where:
- F = force
- m = mass
- a = acceleration

Detailed Explanation

This formula summarizes the second law of motion. It shows how force (F) is the product of mass (m) and acceleration (a). If you know any two of the variables (for example, mass and force), you can calculate the third (acceleration). This relationship reveals that larger masses require more force to achieve the same acceleration compared to smaller masses.

Examples & Analogies

Think about pushing two different vehicles: a bicycle and a car. To get the car (which has a greater mass) to accelerate the same as the bicycle, you will need to apply much more force. This illustrates how the mass of an object affects the amount of force required.

Momentum and Its Change

Chapter 3 of 3

🔒 Unlock Audio Chapter

Sign up and enroll to access the full audio experience

0:00
--:--

Chapter Content

Momentum (p) = mv
⇒ F = dp/dt

Detailed Explanation

Momentum is represented by the symbol p and is defined as the product of an object's mass (m) and velocity (v). The equation F = dp/dt describes how the force can also be understood as the rate of change of momentum over time. This indicates that when a force acts on an object, it changes the object's momentum in a specific time frame.

Examples & Analogies

Consider a baseball that you hit with a bat. The bat transfers force to the ball, changing its momentum as it speeds up and moves in a new direction, demonstrating how the force applied results in a change in momentum.

Key Concepts

  • F = ma: Force is equal to mass times acceleration, which showcases the relationship between these three quantities.

  • Momentum (p = mv): The product of an object's mass and velocity, indicating how much motion it has.

  • Impulse: The change in momentum resulting from a force acted over a period of time, defined as F × t.

Examples & Applications

Pushing a car: A greater force results in higher acceleration for the same mass.

Throwing a ball: The harder you throw it (greater force), the faster it accelerates.

Memory Aids

Interactive tools to help you remember key concepts

🎵

Rhymes

If you want to go fast, push with great force, / But when mass is so high, your speed won't endorse.

📖

Stories

Imagine a big elephant and a small mouse. When both are pushed with the same force, the mouse zooms away while the elephant barely moves; this illustrates the effect of mass on acceleration.

🧠

Memory Tools

For every mass, multiply by force, achieve acceleration—F, M, A, the winning course!

🎯

Acronyms

Remember FMA

Force

Mass

Acceleration for the second law.

Flash Cards

Glossary

Force

A push or pull that can change the state of rest or motion of a body, measured in newtons (N).

Acceleration

The rate at which an object changes its velocity, measured in meters per second squared (m/s²).

Mass

The quantity of matter in a body, typically measured in kilograms (kg).

Momentum

The product of an object's mass and its velocity, represented by the formula p = mv.

Reference links

Supplementary resources to enhance your learning experience.