Practice Variation of τ in the cross-sectional plane - 2 | 24. Non-uniform Bending | Solid Mechanics
K12 Students

Academics

AI-Powered learning for Grades 8–12, aligned with major Indian and international curricula.

Professionals

Professional Courses

Industry-relevant training in Business, Technology, and Design to help professionals and graduates upskill for real-world careers.

Games

Interactive Games

Fun, engaging games to boost memory, math fluency, typing speed, and English skills—perfect for learners of all ages.

2 - Variation of τ in the cross-sectional plane

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions related to the topic.

Question 1

Easy

Define shear stress (τ) in your own words.

💡 Hint: Think about where the stress acts related to shear forces.

Question 2

Easy

What does V stand for in the context of beam analysis?

💡 Hint: Recall the forces acting on beams.

Practice 4 more questions and get performance evaluation

Interactive Quizzes

Engage in quick quizzes to reinforce what you've learned and check your comprehension.

Question 1

What does τ represent in structural mechanics?

  • Pressure
  • Shear Stress
  • Bending Moment

💡 Hint: Remember the context of the forces at play.

Question 2

True or False: Shear stress is constant across all points in a beam's cross-section.

  • True
  • False

💡 Hint: Think about the behavior of material under load.

Solve and get performance evaluation

Challenge Problems

Push your limits with challenges.

Question 1

Given a cantilever beam with a rectangular cross-section subject to a central point load, calculate the maximum shear stress in the beam. The beam length is 6 m, width is 0.2 m, height is 0.3 m, and total shear force is 10kN.

💡 Hint: Look at the geometry for Q and remember shear force is along the length!

Question 2

Analyze how shear stress would differ in a composite beam featuring both rectangular and circular cross-sections. Provide the explanation regarding shear force distributions.

💡 Hint: Map out the individual cross-section behaviors before mixing them.

Challenge and get performance evaluation