IB Class 10 Mathematics – Group 5, Algebra | 12. Introduction to Logarithms by Abraham | Learn Smarter
K12 Students

Academics

AI-Powered learning for Grades 8–12, aligned with major Indian and international curricula.

Academics
Professionals

Professional Courses

Industry-relevant training in Business, Technology, and Design to help professionals and graduates upskill for real-world careers.

Professional Courses
Games

Interactive Games

Fun, engaging games to boost memory, math fluency, typing speed, and English skills—perfect for learners of all ages.

games
12. Introduction to Logarithms

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take mock test.

Sections

  • 1

    Definition Of A Logarithm

    This section introduces the concept of logarithms as the inverse operation of exponentiation, providing definitions and foundational relationships.

  • 2

    Converting Between Forms

    This section covers the process of converting between exponential and logarithmic forms, providing foundational knowledge for understanding logarithms.

  • 2.1

    Exponential To Logarithmic

    This section explores the conversion between exponential and logarithmic forms, focusing on the definitions and relationships between the two.

  • 2.2

    Logarithmic To Exponential

    This section explains the relationship between logarithmic and exponential forms, providing various examples and laws of logarithms essential in solving equations.

  • 3

    Laws Of Logarithms

    This section covers the fundamental laws of logarithms, essential for simplifying expressions involving logarithmic functions.

  • 3.1

    Product Rule

    The Product Rule in logarithms states that the logarithm of a product is the sum of the logarithms of the factors.

  • 3.2

    Quotient Rule

    The Quotient Rule of logarithms enables the simplification of logarithmic expressions involving division.

  • 3.3

    Power Rule

    The Power Rule of logarithms simplifies the evaluation of logarithmic expressions involving exponents.

  • 3.4

    Change Of Base Formula

    The Change of Base Formula is a useful tool for converting logarithms from one base to another and facilitates the use of calculators to evaluate logarithmic expressions.

  • 4

    Common And Natural Logarithms

    This section introduces common and natural logarithms, explaining their definitions and notation.

  • 4.1

    Common Logarithms

    This section introduces common logarithms and their relationship to exponents and logarithmic equations.

  • 4.2

    Natural Logarithms

    This section introduces natural logarithms and their significance in mathematics, particularly emphasizing the relationship between natural logarithms and the constant e.

  • 5

    Evaluating Logarithms

    This section covers how to evaluate logarithmic expressions, both with and without the use of a calculator.

  • 5.1

    Without Calculator

    This section introduces logarithmic expressions and their evaluation without calculators, utilizing fundamental properties of logarithms and exponentials.

  • 5.2

    With Calculator

    This section teaches students how to evaluate logarithms using a calculator, specifically focusing on common logarithms (base 10) and natural logarithms (base e).

  • 6

    Solving Logarithmic Equations

    This section focuses on solving logarithmic equations by converting to exponential form and applying the laws of logarithms.

  • 6.2

    Example 2

    This section explores logarithmic equations and provides instructional examples for solving them.

  • 6.3

    Example 3

    This section focuses on solving logarithmic equations through examples.

  • 7

    Practice Exercises

    This section provides practice exercises to convert between logarithmic and exponential forms, simplify logarithmic expressions, and solve logarithmic equations.

  • 7.1

    Convert To Logarithmic Form

    This section teaches students how to convert numbers between exponential and logarithmic forms, highlighting the relationship between the two.

  • 7.2

    Convert To Exponential Form

    This section focuses on converting logarithmic expressions into exponential form, emphasizing the relationship between the two concepts.

  • 7.3

    Simplify

    This section breaks down the process of simplifying logarithmic expressions using logarithmic laws.

  • 7.4

    Solve

    The section focuses on solving logarithmic equations by converting from logarithmic to exponential form and applying the laws of logarithms.

  • 8

    Summary

    This section summarizes the key concepts of logarithms, highlighting their definitions, properties, and applications.

Class Notes

Memorization

Revision Tests