Practice Numerical Methods for Solving Equation of Motion - 32.2.4 | 32. Response of Structures to Earthquake | Earthquake Engineering - Vol 3
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Numerical Methods for Solving Equation of Motion

32.2.4 - Numerical Methods for Solving Equation of Motion

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions

Question 1 Easy

What is a numerical method?

💡 Hint: Think about why approximations are needed in solving mechanical problems.

Question 2 Easy

Name one time-stepping method.

💡 Hint: Recall the discussion on why methods are needed for analyzing seismic responses.

4 more questions available

Interactive Quizzes

Quick quizzes to reinforce your learning

Question 1

What is the Newmark-beta method primarily used for?

A. Solving static equations
B. Solving equations of motion under dynamic loading
C. Calculating shear forces in beams

💡 Hint: Consider what type of forces influence structures over time.

Question 2

True or False: The Runge-Kutta method is less accurate than the Wilson-θ method.

True
False

💡 Hint: Think about why accuracy is crucial in dynamic structural analysis.

Get performance evaluation

Challenge Problems

Push your limits with advanced challenges

Challenge 1 Hard

Create a detailed three-step analysis using the Newmark-beta method for a building subjected to a defined ground acceleration. Outline your steps and calculations.

💡 Hint: Review your understanding of how to build the dynamic equation.

Challenge 2 Hard

Using the Runge-Kutta method, simulate the response of a two-degree-of-freedom system under sinusoidal motion. Specify initial conditions and analyze displacement responses.

💡 Hint: Consider how sinusoidal inputs will affect the motion through the time-stepping process.

Get performance evaluation

Reference links

Supplementary resources to enhance your learning experience.