Industry-relevant training in Business, Technology, and Design to help professionals and graduates upskill for real-world careers.
Fun, engaging games to boost memory, math fluency, typing speed, and English skills—perfect for learners of all ages.
Enroll to start learning
You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.
Test your understanding with targeted questions related to the topic.
Question 1
Easy
What is an eigenvector?
💡 Hint: Think about transformations applied to vectors.
Question 2
Easy
What does the characteristic polynomial help us find?
💡 Hint: Recall the purpose of deriving this polynomial.
Practice 4 more questions and get performance evaluation
Engage in quick quizzes to reinforce what you've learned and check your comprehension.
Question 1
What is the first step in finding the eigenvalues of a matrix?
💡 Hint: Recall the importance of the determinant in linear transformations.
Question 2
True or False: A matrix is diagonalizable if it has n distinct eigenvalues.
💡 Hint: Consider matrix properties on multiplication and transformations.
Solve 2 more questions and get performance evaluation
Push your limits with challenges.
Question 1
Given the matrix A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}, find its eigenvalues and eigenvectors.
💡 Hint: Remember to calculate the determinant first.
Question 2
Discuss the geometric interpretation of eigenvalues and eigenvectors in a physical system like pendulums.
💡 Hint: Relate eigenvalues to physical properties such as stiffness or mass in vibrations.
Challenge and get performance evaluation