Practice Use in Finite Element Method (FEM) - 12.18 | 12. Dirac Delta Function | Mathematics (Civil Engineering -1)
Students

Academic Programs

AI-powered learning for grades 8-12, aligned with major curricula

Professional

Professional Courses

Industry-relevant training in Business, Technology, and Design

Games

Interactive Games

Fun games to boost memory, math, typing, and English skills

Use in Finite Element Method (FEM)

12.18 - Use in Finite Element Method (FEM)

Enroll to start learning

You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.

Learning

Practice Questions

Test your understanding with targeted questions

Question 1 Easy

What does the Dirac delta function represent mathematically?

💡 Hint: Think about where it is non-zero.

Question 2 Easy

How does the Dirac delta function aid in achieving weak formulations in FEM?

💡 Hint: Focus on point evaluation.

4 more questions available

Interactive Quizzes

Quick quizzes to reinforce your learning

Question 1

What is the integral of the Dirac delta function over its entire domain?

0
1
Infinity

💡 Hint: Think about what the function captures in its behavior.

Question 2

True or False: The Dirac delta function is a traditional continuous function.

True
False

💡 Hint: Recall the definition we discussed.

1 more question available

Challenge Problems

Push your limits with advanced challenges

Challenge 1 Hard

Derive the weak form of a simple differential equation using the Dirac delta function as a point source.

💡 Hint: Review the definitions of weak formulations and point evaluations.

Challenge 2 Hard

Create a FEM model for a cantilever beam subjected to a point load at its free end using delta functions.

💡 Hint: Think about your boundary conditions and how the delta function influences load applications.

Get performance evaluation

Reference links

Supplementary resources to enhance your learning experience.