24.6 - Applications of Bernoulli's Equation
Enroll to start learning
You’ve not yet enrolled in this course. Please enroll for free to listen to audio lessons, classroom podcasts and take practice test.
Practice Questions
Test your understanding with targeted questions
What does Bernoulli's Equation relate?
💡 Hint: Think of the three components involved in the flow of fluids.
Define static pressure.
💡 Hint: Consider the condition of the fluid when it's not moving.
4 more questions available
Interactive Quizzes
Quick quizzes to reinforce your learning
What does Bernoulli's Equation mathematically connect?
💡 Hint: Consider all the relationships defined in the equation.
True or False: The coefficient of discharge is always equal to one.
💡 Hint: Reflect on the assumptions made in real-world applications versus theoretical models.
Get performance evaluation
Challenge Problems
Push your limits with advanced challenges
A fluid flows through a pipe with diverse diameters. If the pressure at point A is 300 kPa and point B (narrower section) is 200 kPa, what is the velocity at point B, considering a kinetic energy correction factor of 1.05?
💡 Hint: Think about how pressure drops as fluid speeds up in the narrower section.
Calculate the discharge through a venturi meter with a diameter of 0.2 m at the inlet and 0.1 m at the outlet, given that the pressure drop is 50 kPa. Consider an average fluid density of 1000 kg/m³ and apply the coefficient of discharge.
💡 Hint: Remember to apply A1V1 = A2V2 to connect flow areas and velocities.
Get performance evaluation
Reference links
Supplementary resources to enhance your learning experience.